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A lower bound on the information capacity of a quantum 
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Avenue, London, NW3 7ST 

Received 21 November 1980 

Abstract. A method suggested by Holevo is used to obtain a lower bound for the 
information capacity of a quantum narrow-band free-space link without extraneous noise. 
At high photon rates the bound is better than those previously proposed and comes close to 
a fundamental upper bound. It is not so good at low rates, where it  is beaten by 
photon-detecting systems. The normal modes are not treated as independent channels. A 
system is describeo where the normal modes are used in pairs. 

1. Introduction 

In a previous article (Chambers 1981, henceforth referred to as I) the author attempted 
to find upper and lower bounds for the information capacity of a narrow-band 
free-space link. The upper bound is due to the finite number of orthogonal states 
available to the electromagnetic field. The lower bounds were obtained by considering 
the information rates of hypothetical systems, in which the normal modes of the field are 
used as independent channels. Since then the author’s attention has been drawn to an 
article by Holevo (1979) in which it is proved that if the modes are used cooperatively it 
is possible to achieve higher rates. In this article Holevo’s techniques are adapted for 
the narrow-band free-space link to obtain a better lower bound. 

It may be useful to picture a narrow-band free-space link of bandwidth B as a system 
where the receiver exposes (say by means of a synchronised switch) a number B of 
simple harmonic oscillators in every second. The transmitter then puts each oscillator 
into a predetermined ‘coherent state’ (Helstrom 1976). The mean number of photons 
per oscillator A is equal to P/(Bhv) where v is the central frequency and P the received 
power. We define J as the information rate divided by B, so that it is in effect the 
information per oscillator. 

It was argued in I on simple grounds that the information J could not exceed a value 

C,,,= (A + 1) ln(A + l ) - A  In A. (1) 

It was also suggested that this bound was probably unattainable. For small values of A it 
is found that C,,, == A ln(l/ii) + A + 0 ( A 2 ) ,  so that the information per photon is roughly 
equal to ln(l/A). A photon-detecting system also showed this logarithmic behaviour 
and gave a value of J which compared favourably with C,,,. At high values of A it is 
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found that C,,, = ln(fi) + 1 +$A-’ + 0(K2). A ‘lattice system’ was described with 

J = In f i  + 1 -D+o(E-’) (2) 

with the ‘defect’ D equal to approximately 0.71. 
It will be shown that there is a lower bound for the capacity of 

~, i ,=ln(3[1+(1+4fi~)”~1}+4fi / [ l  +2fi+(1+4fi2)”*]. (3) 

For large f i  this gives Cmi, = ln(fi) + 1 +:A-’ + 0(K2), which is remarkably close to 
C,,,. Unfortunately for small f i  we find that Cmin=2A, without the logarithmic 
behaviour. Thus (3) is presumably not the last result in this subject. 

Equation ( 3 )  is derived in 0 3 after some preliminaries in § 2. In § 4 it is shown that 
the cooperative use of pairs of oscillators in a ‘lattice system’ can indeed improve on the 
author’s previous results, though not as strikingly as equation (3). 

2. A bound on the error 

Suppose that a signalling system uses an alphabet of M symbols over a discrete 
‘memoryless’ channel, and that there is a probability qr that the rth symbol is incorrectly 
received. The mean probability of error is defined as A = M-’X,qr, for which Holevo 
(1979) derived a bound. This bound does not directly guarantee a bound on the 
maximum probability of error, but it is easy to show that there is a sub-alphabet with at 
least :it4 symbols with a maximum probability of error not exceeding 2h. For suppose 
we throw out those symbols whose probability of error exceeds 2h. Then the ensuing 
sum S of the probabilities of error must satisfy S <MA - 2nh, where II is the number of 
symbols thrown out. Since S 2 0 we must have n < iM. 

We imagine that when the rth symbol is sent, the receiver is put into a quantum state 
represented by the normalised state vector 4,. These vectors are iiot necessarily 
orthogonal or even linearly independent. We attempt to determine which symbol was 
sent by measuring some dynamical variable (Dirac 1958) with orthonormal eigenstates 
e,. If the system is then found to be in the state el we assume that the lth symbol was sent. 
The probability of finding el when +, was used is just I(&, er)/’. Thus the mean 
probability of error is A = M-’Zr[l - I(+,, er) i2 ] .  Holevo has proved that the minimum 
value Amin  of this expression obtained by varying the orthonormal set e, satisfies 

h m i n  sM- ’ZL ,s I (+ r ,  +s)I2 (4) 
where the prime denotes that the terms with r = s are omitted. The proof assumes that 
the are linearly independent, but the extension to the case when this is not so is easily 
made. Since the proof is brief and perhaps not immediately accessible to all readers, a 
version is given here. 

From the inequality 11 - a l 2  2 0 we find 2 - 2 Re(a)  2 1 - la l’, and so it follows that 
A M s  2,[2 - 2 Re(&, e , ) ] .  We now wish to choose the orthonormal set e, to minimise 
the right-hand side. We define the Hermitian matrix I’,, = (+,, +s) whose diagonal 
elements are equal to 1. We may then find a unitary matrix c r k  such that Z s r r s C s k  = 
C r k Y k  where the Y k  are the eigenvalues of r, which are positive if the 4, are linearly 
independent. Thus we find 
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where the vectors (Pk = yi1/21r+rCrk form an orthonormal set. Hence the matrix 
u k s  = ( ( P k ,  e,) is unitary, and so the above expression is & y i / 2  (UC)kk where the matrix 
UC is also unitary. Since y:” > 0 the real part is maximised by setting UC = I, which 
maximises (to unity) the real parts of every diagonal element of UC. Thus we find that 

 MA^^,, s (2 - 2 y: ” )  = Tr(2 - 2 P )  = Tr( 1 + r - 2 r 1 9  

= Tr(1 -rl/’)’ = Tr[(l - r)/(l+ r1/2)]2 s Tr(1 -r)2 
= Z s I ( $ r ,  +s)12 

which is the result (4). 
If the &. are linearly dependent, then we may assume that there is a linearly 

independent subset on which the others depend. We introduce a positive parameter 77 
and an orthonormal set of vectors f r  which are also orthogonal to the space spanned by 
the &. (Thus the state-space is extended.) We define vr = 0 if +br belongs to the linearly 
independent subset, and 77, = 77 otherwise. Then it is easy to see that the vectors 
xr = (1 + 7, ) (& + vrf r )  form a set of linearly independent normalised vectors, for 
which the preceding analysis may be used. It is then readily shown by substituting for t,hr 
that 

2 -1/2 

2 1 /2  1 - 1($r ,  er)/’ s 1 - I(xr, er)I2 + 277r(1+ 77, 

and by substituting for xr that 

l ( x r ,  ~ s ) I ~ s  I(+n +s)12+Srs(2vt +v:)  
and so overall it is found that 

M A m i n s  x;sI(+n $ s ) 1 2 + F ( ~ )  

where F(v)+O+ as 7+0+.  Since the other terms are not dependent on 77 we 
reobtain (4). 

3. A lower bound 

The lower bound (3) can be obtained as follows. We imagine that N normal modes or 
oscillators are used together in some way. Each receiver state is then a direct product of 
N coherent states Ia1, . . . , aN) = lal) . . . laN) where the ai are complex numbers. We 
may represent such a state as a point a in a 2N-dimensional real space. The quantity 
Ia12 = Ilai12 is then the expectation value of the total photon number which is EN, E 
being the average number of photons per oscillator. Thus with a given value of E ,  the 
points are confined to the surface of a 2N-dimensional sphere of radius a = (see 
figure 1). We now use the technique of random encoding (Holevo 1979, Shannon 
1948). The M input symbols are represented by M points on this sphere. We then 
average over all such encodings, so that any given input symbol may be represented by 
any point on the sphere with uniform probability distribution. The sum in (4) involves 
M ( M  - 1) pairs of points. For two states represented by the points P and Q in figure 1 
the square of the matrix element is simply exp(-q2) where q is the distance PQ 
(Helstrom 1976). Without any loss of generality we may take P as fixed, and then 
average exp(-q2) over all positions of Q on the surface. This bounds the average of 



2628 W G Chambers 

‘̂ 

Figure 1. The geometry used for evaluating the average of exp(-q2) over the suyface of a 
sphere of radius a = in 2N dimensions. 

A,,,, which we denote by h.  Thus we find 

M h  s M ( M  - 1) I exp(-q2) dS/[ dS  

where the integrals are taken over the sphere in figure 1. The belt produced by rotating 
QQ‘ about the axis OP  has an ‘area’ K 2 ~ - 1 p  is the 
‘surface area’ of a sphere of radius p in 2 N  - 1 dimensions. By the geometry illustrated 
in figure 1 we have p = a sin 8, q = 2a sin(&9), with a = 

h s ( M  - 1) low exp[-4EiV sin2($Q)](a sin Q)2N-2a d e  

We require a bound for In h in the limit of large N, and for this purpose we may use 
the method of stationary phase in a fairly cavalier way. We replace the exponents 
2 N  - 2 by 2N, the factor M - 1 by M and we evaluate the logarithm of each integral as 
the logarithm of the greatest value of the corresponding integrand. The integrand in the 
numerator has a maximum when 8 = cos-’{2A/[1+ (1 +4fi2)’”]}, and so it is found that 
In h 15 In M - NC,,, where Cmin is given by (3). The information sent per oscillator J is 
given by JN = In M and so if J is less than Cmin and independent of N we find that the 
bound on h falls exponentially with N. Now is the probability of error averaged over 
all encodings. Thus there is an encoding whose value of A,,, is less than this. Overall, 
provided that J < Cmin we can certainly find an encoding with a probability of error as 
small as we please, by making N large enough. This establishes a lower bound for the 
information capacity. 

A plot of C,,, and C,,, against f i  is shown in figure 2 .  It is evident that the bounds 
are fairly close, although the ratio falls off for small values of f i .  

2N-2 2 N - 2  a de, where K2N-1p 

so that 

/ 5,” ( a  sin @)2N-2a de. 

4. Lattice system with paired oscillators 

Proofs based on random encoding are not constructive, so it is worth considering a 
definite situation to show how the cooperative use of oscillators (or normal modes) can 
increase the rate of information. A lattice model was set up in I as a hypothetical 
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Figure 2. Plots of the bounds C,,, (equation(1)) and Cmi, (equation (3)) against A on the 
information per oscillator (in natural units). 

transmission system with independently used oscillators (for the case of large e) .  It was 
shown that if the values of the coherent-state parameter a were permitted to form a 
square lattice of spacing 7 ~ ” ~  then the displacement operators which translated the 
coherent states into one another formed an abelian group. Thus in vector notation we 
may write a = ~ T ” ~ ( I ~ ,  12) with ll and l2 integral. Hence solid-state techniques can be 
used to form orthonormal Wannier functions (Ziman 1964). (Incidentally for this 
system these form the optimal set e, as described in Q 2, provided the coherent states are 
linearly independent.) Moreover it was shown that if the coherent states had been 
orthogonal, so that there need have been no error in the measuring process, then the 
information would have been given by (2) with D = 0. Unfortunately this square lattice 
could not be directly used, since these coherent states are linearly dependent. So a 
larger lattice spacing was used, which is equivalent to restricting the values of 11 and 12 by 
l l  + l 2  = 0 mod 2. Since this effectively halves the number of points for each normal 
mode it reduces the information rate by In 2 plus a little more for the ‘equivocation’ due 
to the probability of error. Hence it was found that D = 0.71 in equation (2). 

An alternative is to pair off the oscillators in some way, and specify the direct 
product of pairs of coherent states by two complex numbers a = T ~ ” ( I I ,  l 2 )  and 
p = . rr1l2( l3 ,  14) which form a ‘cubic’ lattice in four dimensions if the li are integers. We 
then introduce a simple coding by demanding that the It  add up to a multiple of 2. The 
effect of this is to halve the density of lattice points and thus to reduce the information 
per pair of oscillators by In 2. Rather than use the method of quadratures in k-space 
suggested in I to compute the equivocation (a rather daunting prospect in a four- 
dimensional non-cubic Brillouin zone!), the following perturbation method can be 
used. The amplitudes corresponding to ($?, e l )  in this system turn out to be the Fourier 
components of a function y;” in k-space where 3/k = 1 + &MR exp(ik * R ) .  Here the 
MR are overlap integrals for coherent states spaced by R (in vector notation) and the 
prime denotes the absence of the term with R = 0. The Fourier components of y:/2 can 
then be picked out from the ordinary binomial expansion for the square root. Using this 
method we obtain a value for the ‘defect’ D in equation (2) of about 0.40 after halving 
the computed equivocation to allow for the pairing of the oscillators. 

Presumably it is possible to group oscillators into larger blocks, and ‘thin out’ the 
multi-dimensional lattice by imposing several parity constraints on the I,. Whether this 
makes D tend to zero has not been investigated. 
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5. Concluding remarks 

The author has no serious suggestions for obtaining better answers at the other limit, 
when A is very small. It may be that in this case the photons are acting in a classical 
manner, as particles, and so the old theorem may apply that for classical links the 
optimum rate can be obtained by using the normal modes independently (McEliece 
1977). It seems unlikely that the upper bound C,,, can be attained in this way. If the 
upper bound cannot be attained for small 5, then it may not be attainable for large A 
either, although the method of ‘random coding’ comes remarkably close. 
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